物理学院程建春课题组在Appl. Phys. Lett.发表封面文

最近,我校物理学院声学研究所、人工微结构科学与技术协同创新中心程建春教授和梁彬教授在声波操控研究方面取得重要突破,最新研究成果以“Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase” 为题发表在2018年4月24日的Nature Communications上 [Nature Communications, 9, Article number:1632, doi:10.1038/s41467-018-04103-0]。论文的第一作者是南京大学博士生朱一凡,南京大学梁彬教授、程建春教授和华中科技大学祝雪丰教授为共同通讯作者。

最近,南京大学物理学院声学研究所程建春课题组在声学单向传播研究方面取得进展, 最新工作于2015年9月14日作为封面文章(Featured Article)在Appl. Phys. Lett. 发表 [Appl. Phys. Lett. 107, 113501 ]。论文第一作者为博士生朱一凡。共同通信作者是梁彬教授。该工作提出了 “声学单向隧道” (Acoustic one-way tunnel)的设计思想,首次在一个完全连通的、具有平直形状内壁的通道中实现了声波的单向传输,并成功的制备了原理性器件。

该工作利用损耗型声超材料首次实现了声波振幅和相位的解耦操控,并通过实验展示高质量单平面二维和多平面三维声全息生成等现象,证明了此类超材料对三维声场的精细操控的能力。与传统的纯相位声全息相比,基于振幅和相位解耦操控的声全息方法具有设计简便、成像质量好和保真度高等重要优势。

声波的单向操控是近年来的一个研究热点。然而,传统的声学单向传输通常是通过在声路径上放置一层特殊设计的体材料(例如声子晶体、声栅格或其他声学超构材料)来实现。这将不可避免的导致声路径受到部分或完全的阻塞,造成背景媒质的间断。若能在实现声学单向传输的同时允许其它物体(如背景媒质或其他能量流)通过,达到通风或可视的特殊效果,不仅对声单向操控的研究领域有着重要科学意义,更将具有广阔的应用前景。

三维声场的精细控制是声学领域中长期存在的关键科学问题,在超声成像与治疗、建筑声学及粒子操控等多个领域都具有重要的应用前景。然而,任意一个声信号包含幅值和相位信息,声波的完全控制要求能够对两个自由度进行独立调制,但这仍然是一个具有挑战性的难题。另一方面,能量损耗的存在通常被认为会破坏声波操控效果,因此现有的声超材料研究大都局限于无损耗的声学系统。程建春课题组提出了全新的研究思路,通过人为引入受控的能量损耗,开辟了新的声波操控自由度,发展了损耗型声超材料的设计理论,实现了对声波振幅和相位的解耦调制。所设计的损耗型声超材料具有简单的开孔结构,可利用3D打印进行快速制备。通过在超材料背部设置吸收边界和调控结构参数,引入可控的泄漏损耗,严格证明了该体系中反射声波的振幅和相位可以分别在[0,1]和[0,2π]范围内进行独立操控,并通过产生高质量的Airy束、多焦点聚焦及声学全息投影,在理论和实验上展示了基于新机制的声波精细操控效果。

为解决传统设计中声路径受到阻塞的难题,课题组采用了一种全新的物理机制,巧妙地在通道内壁上敷设了声学超常表面,利用其特殊的反射特性对通道中声波的路径产生了不对称的操控。超表面是近年来新出现的光学/声学元件,通过引入相位和振幅的突变,可实现对光波/声波的丰富操控方式。本设计中采用了课题组先前提出的一种具有简单构造方式及高分辨率的声学超表面结构[Sci. Rep. 5, 10966 ],通过在平面下设计一系列深度受到调制的亚波长单元来实现表面相位的精确调控。声学单向隧道一侧的壁面上包含两种不同梯度的超表面组合,可对沿两个方向正入射的平面声波实现非对称的异常反射,其路径可以利用解析方法来定量分析。通过对结构参数进行适当设计,可在该声学隧道中实现正向入射声波可以穿透、而反向入射声波基本被反射的单向效果。

图片 1

图1声学单向隧道示意图利用超表面实现非对称传播的原理示意

图1 声全息重建示意图。LAM声全息示意图。目标全息图像。幅值相位全操控的数值模拟全息像。 传统纯相位法数值模拟全息像。

图2为数值模拟和实验测量结果的对比,可以看出所设计的声学通道可以对两个相反方向入射的声波实现高效的单向操控,验证了上述设计思想的正确性。这种声学概念性器件为声学单向器件的设计带来了新的可能性,有望在管道噪声控制、隔声窗设计及建筑声学等重要场合产生广泛应用。

图1对比了幅度相位解耦调控与传统的纯相位调控方法在产生高复杂度声全息方面的能力,幅值相位法声全息具有简单的设计过程,目标像为南京大学校徽图案。数值模拟结果证明,通过利用损耗型超材料对幅度和相位进行独立操控,可产生高质量、高保真度的声全息,不仅避免了繁复的计算机优化设计过程,其效果亦明显优于传统纯相位优化方法。

图2数值模拟和实验结果:正向和反向的声压场分布

图片 2

该项工作得到国家重大科学研究计划、人工微结构科学与技术协同创新中心、国家自然科学基金等重大科研项目的支持。

本文由优信彩票购彩大厅发布于产品评测,转载请注明出处:物理学院程建春课题组在Appl. Phys. Lett.发表封面文

您可能还会对下面的文章感兴趣: