【广发金融工程】2018年重磅专题系列之七:人工

原标题:【广发金融工程】2018年重磅专题系列之七:人工智能在资产管理行业的应用和展望

人工智能步入金融领域的主流玩法
2016-10-26 量化与对冲(资料来源)

图片 1

目前金融机构的主流玩法有四种:

摘要

  1. 投资银行和卖方研究尝试自动报告生成,2. 金融智能搜索;3. 公募、私募基金在通过人工智能辅助量化交易;4. 财富管理公司在探索智能投顾方向。

随着深度学习技术的进步,人工智能迎来了历史上最好的发展时期。近年来,国内外知名的科技公司纷纷在人工智能上发力,创造了一系列突破性成果。同时,对冲基金和投资银行也开始在人工智能上进行布局。高盛、BlackRock、Citadel、D.E. Shaw等公司是投资领域人工智能的先行者。

1 自动生成投研报告靠谱吗?

人工智能能够帮助不同类别的资管机构提高竞争力,在未来的市场竞争中占得先机。分部门来看,人工智能正在或者即将对资管机构的投资、研究、交易、风险管理、产品设计、营销等细分部门产生深远的影响。

在投资银行的投行业务与证券研究业务中涉及大量的固定格式的报告撰写工作,如招股说明书中的部分章节,研报,以及投资意向书。这些报告撰写需要大量的投行初级员工进行长时间枯燥繁琐的数据罗列、整理、反复Copy-Paste工作。

正文

目前,自动报告生成主要运用自然语言处理(NLP)中的两种技术:

一、概述

自然语言理解(NLU):将日常话语消化理解,并转化为机器可后续处理的结构;

(一)人工智能技术迅速发展

自然语言生成(NLG):将由机器拆分好的结构化数据以人们能看懂的自然语句表达出来。

近年来,人工智能技术发展迅速,在图像识别、语音识别等人工智能研究和应用的不同领域取得了突破性进展。以图像识别为例,目前计算机图像识别的准确率已经超过了人类。下图展示了每年ImageNet网站大规模视觉识别挑战赛(ILSVRC)图像识别错误率的下降情况。从2010年到2017年,图像识别错误率已经从28.2%降低到2.25%。

我们可以将这两种技术理解看成对日常对话这一原料的拆分加工和整装成可理解的自然语句——最终产品。

图片 2

然而真正生成报告还需要利用以上技术完成3个步骤:

2016年以来,万众瞩目的围棋人工智能软件AlphaGo与顶尖人类棋手的比赛中,AlphaGo完胜人类棋手,也是目前人工智能高速发展的一个写照。

1.处理海量异构数据

目前,人工智能技术在许多相关领域表现出接近甚至超过人类专家的性能和效率,开始在不同领域发挥实际价值。

将投行分析师需要阅读的年报,彭博新闻社的实时新闻以及数据,行业分析报告,以及法律公告等资源进行消化。其中对于文本中的图片和表格需要OCR(光学字符识别)等技术解析。

科技公司是人工智能技术的主要研发者,也是人工智能首先的受益者。谷歌、百度等搜索巨头是人工智能的先驱。一方面,通过人工智能方法提高查询效率,实现更精准的搜索服务;另一方面,基于人工智能技术的广告投放是搜索巨头的主要盈利模式。脸书通过人工智能方法在面部识别、机器翻译和文本学习方面给公司产品带来新的突破。苹果公司通过人工智能方法优化用户在移动产品上的使用体验。英伟达和英特尔等硬件公司主要通过生产更适合深度学习和人工智能计算的(专用)芯片来盈利。

2.分析数据

在资产管理领域,人工智能技术受到的关注也越来越多,并且已经开始影响资产管理的诸多方面。一方面,初创型公司和科技公司积极依托大数据分析和人工智能技术上的优势涉足资产管理领域;另一方面,传统的金融机构也积极拥抱人工智能技术,争取在人工智能时代取得先机。

这一过程涉及运用知识图谱中常用的知识提取与实体关联将其关键逻辑主干抽出,结合事件地点等因素,将关键信息嵌入预先设计好的报告模板中。

(二)人工智能在资产管理领域的应用

3.文章生成

不同的资产管理业务模式都开始受到人工智能的影响。人工智能技术可以推动包括Alpha主动管理者、Beta规模经营者、解决方案专家和分销巨头等机构提高竞争力,在未来的资产管理竞争中获得优势。

经过处理海量异构数据与分析数据的过程后,即可生产新闻,券商分析研报,上市招股书,企业年报,定增公告,甚至基金研究员开每日晨会所需的投资建议书也都可以用类似方式生成。用户只需选择符合其需求的模板确定主题与关键信息,以及报告呈现形式,便可生成基本内容。而且投行分析师可以进行校对与人工二次编辑,加入有价值的观点与结论,并提升报告精准度。

分部门来看,人工智能正在或者即将对资产管理领域的投资、研究、交易、风险管理、产品设计、营销等细分部门产生深远的影响。我们将在下文对人工智能在资产管理不同部门上的应用进行梳理。

自动报告生成已经被广泛的运用到新闻行业中,代表的科技公司有美联社投资的Automated Insights已为美联社自动生成出10多亿篇文章与报告。法国公司Yseop可以每秒生产3000页内容,支持英语,法语,德语等多种语言,产品广泛用于银行、电信公司的客户服务部门以及财经新闻网站。

图片 3

但是一些科技公司已经不仅仅满足于为新闻行业提供自动报告生成的服务。

二、人工智能增强投资表现

Narrative Science由西北大学的新闻系和计算机科学系的联合创立,旨在通过给定主题的数据分析,自动生成文章报告。该公司的著名数据分析平台Quill可以分析结构化数据,将人工智能与大数据进行技术融合,理解这些数据的重要性,从而产生简短的文字表述或结构化的报告内容。Quill的主要面向对象为——金融服务提供商。

(一)应用人工智能的对冲基金表现出色

Narrative Science的CEO Frankel 表示“我们的目标是替代人工做绝大部分基础工作,让机器来处理数据和信息”。

对冲基金是资产管理领域中使用人工智能技术的先行者。早在2007年,总部位于纽约的Rebellion Research公司就推出了第一个纯人工智能投资基金。桥水基金从2013年开始建立人工智能团队,基于历史数据与统计概率建立起交易算法,让系统能够自动学习市场变化并适应新的信息。近年来,知名的对冲基金,如文艺复兴科技公司、Two Sigma、Citadel、D.E. Shaw等也在扩充自己的人工智能团队。

2 人工智能如何辅助量化交易

对冲基金研究机构Eurekahedge比较了不同类型的对冲基金在2010年至2016年的表现,如下图所示。其中,人工智能对冲基金指数(AI/Machine Learning Hedge Fund Index)跟踪了历史上23只用人工智能投资的对冲基金的净值。

量化交易从很早开始就运用机器进行辅助工作,分析师通过编写简单函数,设计一些指标,观察数据分布,而这些仅仅把机器当做一个运算器来使用。直到近些年机器学习的崛起,数据可以快速海量地进行分析、拟合、预测,人们逐渐把人工智能与量化交易联系得愈发紧密,甚至可以说人工智能的3个子领域(机器学习,自然语言处理,知识图谱)贯穿量化交易的始终。

图片 4

  1. 机器学习:从数字推测模型

根据Eurekahedge的统计结果,人工智能对冲基金指数从2010年以来的年化收益率为8.44%。同期,管理期货类对冲基金指数、趋势跟踪对冲基金指数和传统方法对冲基金指数的年化收益率分别为2.62%、1.62%和4.27%。不同类型对冲基金指数的分年度收益率如下图所示,其中,在2011年、2013年、2015年和2016年,人工智能对冲基金跑赢了其他传统类型的对冲基金。

量化交易分析师们对财务、交易数据进行建模,分析其中显著特征,利用回归分析等传统机器学习算法预测交易策略。这种方式有两个主要弊端,其一是数据不够丰富,仅限于交易数据,更重要的是它受限于特征的选取与组合(Feature Engineering),模型的好坏取决于分析员对数据的敏感程度。此外一种做法是,模仿专家的行为,选择某一领域的特定专家,复制他们的决策过程,并导入可重复的计算框架。

图片 5

全球最大的对冲基金桥水联合(Bridgewater Asspcoates)早在2013年就开启一个新的人工智能团队,该团队约有六名员工,由曾经供职IBM并开发了认知计算系统Watson的David Ferrucci领导。据彭博新闻社报道,该团队将设计交易算法,通过历史数据和统计概率预测未来。该程序将随着市场变化而变化,不断适应新的信息,而不是遵循静态指令。而桥水基金的创始人也曾公开表示,其旗下基金持有大量多仓和空仓,投资120种市场,持仓组合高达100多种,并且以人工智能的方式考虑投资组合。

人工智能技术主要是从两方面应用于投资决策:一方面依靠人工智能的信息处理能力,通过人工智能方法高效地获取和处理另类数据;另一方面依靠人工智能的知识学习能力,通过人工智能方法进行资产的收益预测和资产的交易。

Rebellion Research是一家运用机器学习进行全球权益投资的量化资产管理公司,Rebellion Research在2007年推出了第一个纯人工智能(AI)投资基金。该公司的交易系统是基于贝叶斯机器学习,结合预测算法,响应新的信息和历史经验从而不断演化,利用人工智能预测股票的波动及其相互关系来创建一个平衡的投资组合风险和预期回报,利用机器的严谨超越人类情感的陷阱,有效地通过自学习完成全球44个国家在股票、债券、大宗商品和外汇上的交易。

图片 6

伦敦的对冲基金机构Castilium由金融领域大佬与计算机科学家一同创建,包括前德意志银行衍生品专家、花旗集团前董事长兼首席执行官和麻省理工的教授。他们采访了大量交易员和基金经理,复制分析师、交易员和风险经理们的推理和决策过程,并将它们纳入算法中。

(二)另类数据处理

在量化交易方面的人工智能初创公司有日本的Alpaca,旗下的交易平台Capitalico利用基于图像识别的深度学习技术,允许用户很容易地从存档里找到外汇交易图表并帮忙做好分析,这样一来,普通人就能知道明星交易员是如何做交易的,从他们的经验中学习并作出更准确的交易。同时Alpaca也推出AlpacaScan作为对美国股票市场实时反映的的K线图工具,抛弃二进制滤波的局限旨在提供给交易员用来识别潜在市场变化趋势的日常必需工具。

按照IDC公司的估计,目前全球存储的数据中,非结构化数据约全体数据的80%左右,而结构化数据仅占约20%。人工智能方法能够高效地处理非结构化数据,从数据中提取信息。

坐落在香港的Aidyia致力于用人工智能分析美股市场,依赖于多种AI的混合,包括遗传算法(genetic evolution),概率逻辑(probabilistic logic),系统会分析大盘行情以及宏观经济数据,之后会做出自己的市场预测,并对最好的行动进行表决。与其类似的公司还有Point72 Asset,Renaissance Technologies,Two Sigma。

金融市场包含大量的结构化数据。然而,市场数据的开放性使得不同的资产管理机构相对来说并没有信息优势,在基于公开市场数据进行投资和博弈的过程中,投资机构将越来越难以获得超额收益。因此,从非结构化数据中提取信息,进行投资决策,将成为资产管理领域的重要发展方向之一。

  1. 自然语言处理:把握市场动态

在处理非结构化数据方面,人工智能技术具有独特的优势。对于网络文本数据,包括公司财报、研究报告、新闻、社交媒体数据等,可以通过自然语言处理技术提取和分析关键信息、比传统机构更早识别出市场的正面和负面消息。对于卫星影像等图片信息,可以通过卷积神经网络等方法进行分析,获得相关公司和工业生产中的一手数据。

当量化交易分析师发现数字推测模型的局限性后,开始考虑引入新闻,政策,社交网络中的丰富文本并运用自然语言处理技术分析,将非结构化数据结构化处理,并从中探寻影响市场变动的线索。

从数据的产生方式来看,另类数据可以划分为个体产生的数据、商业过程产生的数据和传感器产生的数据等。个体产生的数据包括在社交媒体、专业网站、新闻、搜索引擎上产生的一系列数据;商业数据包括交易数据、企业、行业、政府机构的数据等;传感器产生的数据包括卫星图像、定位数据、物联网数据等。

率先使用自然语言处理技术的人工智能对冲基金的是今年6月份在伦敦新设的对冲基金CommEq。CommEq的投资方法结合了定量模型与自然语言处理(NLP),使计算机能够如人类一样通过推断和逻辑演绎理解不完整和非结构化的信息。

图片 7

除此之外,也有采用自然语言处理技术的金融科技公司,如由李嘉诚与塔塔通讯投资的Sentient Technologies运用自然语言处理,深度学习(Deep Learning)等多种AI技术,进行量化交易模型的建立。

互联网时代,新闻、搜索引擎、社交媒体等互联网文本挖掘类数据对市场的影响日渐紧密,基于互联网文本数据与传统交易数据、财务数据相结合进行投资的金融产品也得到投资者的普遍认可。近年来,A股市场诞生的一批大数据基金是另类数据在A股市场投资实践的先行者。

其中最为知名的是号称”取代投行分析师“的投资机器人——Kensho。Kensho是一家致力于量化投资大众化的人工智能公司,旗下有一款产品Warren被称之为金融投资领域的“问答助手Siri”。Kensho结合自然语言搜索,图形化用户界面和云计算,将发生事件关联金融市场,提供研究辅助,智能回答复杂金融投资问题,从而加速交易时间,减少成本,用动态数据与实时信息,及时反映市场动态。

随着投资机构对另类数据价值的进一步认可和相应的人工智能技术的成熟,会有越来越多的另类数据被应用到金融投资中。目前,海外已经有一些通过人工智能方法应用另类数据进行投资的实践者。

这一技术也被广泛运用于风控与征信。通过爬取个人及企业在其主页、社交媒体等地方的数据,一来可以判断企业或其产品在社会中的影响力,比如观测App下载量,微博中提及产品的次数,在知乎上对其产品的评价;此外将数据结构化后,也可推测投资的风险点。这方面国内的很多互联网贷款,征信公司都在大量使用自然语言处理技术,例如宜信,闪银等。另外一些公司则利用这些技术进行B端潜在客户的搜寻,如Everstring,并将信息出售给其上游公司。

iSentium公司是社交媒体数据处理的先行者之一。iSentium提供了基于Twitter信息的实时情绪时序数据,给投资者提供了一个Twitter、新闻或者其他社交媒体信息的市场情绪的一个搜索引擎。

  1. 知识图谱:减少黑天鹅事件对预测的干扰

iSentium提出了一种Twitter情绪指标对市场进行择时的方法。 从2014年1月到2016年6月,该择时策略获取了67.23%的累积收益,而同期标普500指数的涨幅为23.33%。

机器学习与自然语言处理的技术经常会在一些意外(如“黑天鹅”事件)发生的时候预测失败,例如911、熔断机制和卖空禁令等等。人工智能系统没有遇到过这些情况,无法从历史数据中学习到相关模式。这时候如果让人工智能管理资产,就会有很大的风险。

图片 8

此外,机器学习擅长发现数据间的相关性而非因果性。很有名的一个例子是早在1990年,对冲基金First Quadrant发现孟加拉国生产的黄油,加上美国生产的奶酪以及孟加拉国羊的数量与标准普尔500指数自1983年开始的10年时间内均具有99%以上的统计相关性,1993年之后,这种关系莫名其妙的消失了。这就是由于自学习的机器无法区分虚假的相关性所导致的,这时候就需要专家设置的知识库(规则)来避免这种虚假相关性的发生。

在海外市场,卫星影像数据也被越来越多的机构用于投资。

知识图谱本质上是语义网络,是一种基于图的数据结构,根据专家设计的规则与不同种类的实体连接所组成的关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。就金融领域来说,规则可以是专家对行业的理解,投资的逻辑,风控的把握,关系可以是企业的上下游、合作、竞争对手、子母公司、投资、对标等关系,可以是高管与企业间的任职等关系,也可以是行业间的逻辑关系,实体则是投资机构、投资人、企业等等,把他们知识图谱表示出来,从而进行更深入的知识推理。

RS Metrics是一家卫星情报分析公司,通过高分辨率卫星影像,对零售店、餐馆、商场、办公楼和其他商业地产的停车场进行监控,可以估计出它们在全国范围内或者某一地区的客流量增长情况。RS Metrics提供的数据可以帮助对冲基金了解公司基本面,预测销售量,预估企业运营状况。

目前知识图谱在金融中的应用大多在于风控征信,基于大数据的风控需要把不同来源的数据(结构化,非结构)整合到一起,它可以检测数据当中的不一致性,举例来说,借款人张三和借款人李四填写的是同一个公司电话,但张三填写的公司和李四填写的公司完全不一样,这就成了一个风险点,需要审核人员格外的注意。

类似的,Spaceknow采用卫星影像,构建了卫星制造业指数(SMI),该指数对中国超过6000处工业设施进行长期的监测,用来推测中国的经济表现;CargoMetrics是一家人工智能技术对冲基金,基于卫星图像等来挖掘全球航运贸易数据,为大宗商品、外汇、股票等交易提供数据支持。

最早应用知识图谱在金融领域的Garlik就是这一代表。这家公司2005年成立于英国,核心成员来自南安普顿大学(University of Southampton,是语义网的核心研究机构之一),主要业务是在线个人信息监控。Garlik收集网络和社交媒体上的个人信息,当发生个人信息盗窃时会及时报警。Garlik总计融资2469千万美金后被美国的三大个人信用记录公司之一Experian收购,其技术被用于个人信用记录、信用盗窃的分析。Garlik的核心技术之一是大规模语义数据库,前后开源发布了3store, 4store, 5store等高性能数据库。

图片 9

除此之外还有Dataminr,这家基于Twitter及其他公开信息的实时风险情报分析公司。致力于从数据爆炸的社交网络提取精简且价值的风险情报与挖掘关键信息,如舆情热点、金融相关的非交易信息、公共机构安全预警、企业安全等,并直接向客户推送。除此之外,Dataminr还加入早期预警系统,并实时推送警报

(三)交易策略构建

而以投资关系为例,知识图谱可以将整个股权沿革串起来,方便地展示出哪些PE机构在哪一年进入,进入的价格是多少,是否有对赌条款,这些信息不仅可以判断该机构进入当时的估值,公司未来的发展情况(公司成长的节奏),还可以看清PE机构的投资偏好,投资逻辑是如何变更发展的。

人类擅长处理数据中的线性关系,而对非线性关系难以直观理解。与之相比,人工智能方法能够从复杂的数据中提炼非线性关系。金融市场中,变量之间关系复杂,例如,股票走势不仅与公司基本面有关系,而且和宏观经济、大盘走势、投资者情绪等众多变量相关。人类投资者不善于处理这样的问题。与主观投资和传统的量化投资相比,人工智能更擅长从复杂的历史数据中寻找规律、学习知识,将更广泛、更复杂的因素纳入走势预测的分析中,用来指导未来的交易决策。

目前知识图谱在工业界还没有形成大规模的应用。即便有部分企业试图往这个方向发展,但很多仍处于调研阶段。我们认为这其中的难点在于如何与特定领域机构建立起一套合作方式,如何将合作变成一种可轻易编程的界面,让领域专家可以通过系统以一种非常简单的方式进行行业逻辑的建模,而他的逻辑可以通过系统实时得到验证,使其进一步更新,只有通过专家与机器反反复复的迭代,形成闭环,才会服务好用户。

例如,量化交易中常用的多因子选股策略一般是通过多个因子的线性组合来预估股票的未来表现。而采用机器学习算法,挖掘股票因子与收益的非线性关系,有望从中获得与线性模型不同的超额收益。下图展示了深度学习挖掘选股因子的非线性的示意图。将基金经理挑选的与股票收益相关的因素,例如规模、反转、估值、流动性等选股因子,股票的行业特性以及由市场交易产生的技术指标等作为股票的特征,通过机器学习的手段,从历史数据中挖掘这些股票特征与股票未来收益的关系。从数据中挖掘人类难以识别的非线性关系,是人工智能用于投资的重要优势。

全球估值第四高,被称为“下一个独角兽”的公司——Palantir曾推出一个基于知识图谱的金融数据分析平台—Palantir Metropolis,可以整合多源的量化资料,并提供一套方便易用的分析工具来满足复杂的研究需求,其中的组件能够进行复杂搜索,可视化编辑与分析,有非常丰富的人机交互能力。目前Palantir将结构化客户内部数据,关联相关数据,让客户自己创立分析规则整合并优化模型,量化处理数据,从而解决客户的特定需求。

图片 10

3 金融搜索引擎

另一方面,人类投资者并非始终是理性的。行为金融理论表明人类投资者在不同的情景下,风险偏好可能不一样,过度乐观或者过度保守都可能使得投资者作出错误的投资决策。而与人类投资者不一样,计算机决策不容易受到情感左右,可以作出更加理性的判断。

券商/私募基金研究员在进行研究工作的时候需要搜集海量信息,再整理和分析其中内容,如上下游分析,对标企业研究,竞争对手研究,企业亮点/风险点分析等等。

对冲基金领域很早就意识到了人工智能用于投资的前景。文艺复兴科技公司在20世纪90年代就从IBM招募了一批语音识别专家,其中包括后来获得国际计算语言学学会终身成就奖的Bob Mercer。近年来,随着机器学习等人工智能理论和技术的发展,越来越多的基金公司用人工智能方法进行投资。Man AHL从2009年开始研究机器学习在交易上的应用,并在2014年将其用于资产管理。BlackRock在2013年宣布裁撤包括7名投资经理在内的100名主动型基金部门员工。Two Sigma、Citadel等公司也在近年扩充自己的人工智能团队。

然而目前绝大多数证券分析师所运用的辅助研究软件如Bloomberg数据终端只解决了基础数据问题,而没要考虑到信息量过载的问题。这使得研究员在面对大量基础数据与爆炸的信息时无法寻找到最有准确有价值的信息,也无从提高其工作效率。

近年来也产生了一批专注于用人工智能方法进行投资决策的对冲基金。Rebellion Research公司推出的人工智能投资基金是基于贝叶斯机器学习,结合预测算法进行判断,该系统可以根据新的信息和历史经验不断演化,有效地通过自学习完成全球54个国家在股票、债券、大宗商品和外汇上的交易。

金融搜索引擎的背后核心技术是高质量的知识图谱和大量的业务规则,帮助实现联想、属性查找、短程关系发现。探索引擎,如分面浏览器,也是在知识图谱的基础上,则提供了人机协作的界面,让人对数据的探索过程可以很方便地被记录、迭代、重用。此外推荐系统和推送系统也非常有用,帮助金融用户聚焦在关键数据上,更省时省力地做投前发现和投后跟踪。

2013年成立的Castle Ridge资产管理公司通过遗传算法和一些机器学习方法进行投资决策,年均回报率达到32%。

其中语义搜索就是提供不同类型的查询(比如企业、基金、事件等),如智利地震对铜期货的影响,中东危机对整体货币市场的影响等。再将信息切片后再聚合,提供纵览的可视化元素,比如影视传媒相关定增的平均市值和融资市盈率。

Sentient是从事人工智能平台及相关研究的AI公司。其通过公司开发的进化算法以及分布式人工智能平台,为用户在投资、医疗诊断、电子商务等垂直行业提供咨询以及决策服务。在2014年底,鉴于分布式AI平台在金融服务领域的优异表现,Sentient开始尝试使用其研发的进化算法进行交易。这一算法是通过计算机算法创造无数多个具有不同风格和策略的“交易员”,在其分布式AI平台上进行独立的股票交易。最后,Sentient会根据每个虚拟“交易员”的交易成果,来对其进行筛选:表现糟糕的AI将会被淘汰,而表现优异的AI则会进入下一步的筛选与测试。这种优胜劣汰的机制与基因的进化相类似,因而这些“交易员”们又被称为“基因”,Sentient通过这样的进化机制来提高交易表现。

语义搜索将复杂查询交给用户完成,如寻找VR的上游企业,当搜索提供不了准确上游的信息时,会推荐摄像头的企业给用户,并提供一个方便的交互界面,交给用户去进行一些复杂的过滤。

三、人工智能技术提升研究效率

Alphasense就是这样一个在数据层面上轻量级,将复杂逻辑判断交给用户去完成,专注于解决专业信息获取和碎片问题的金融搜索引擎。Alphasense面向金融投资领域,从文件/新闻和研究中集合所有投资信息并进行语义分析,在全球公司数据中进行趋势分析。其使命愿景是从大量噪音中寻找有价值的信息,专注信息丰富度和碎片化基本问题,从而大大提高金融人士的工作效率,节省工作时间。

人工智能技术在另类数据处理、信息整合和信息检索上具有远远高于人类的效率。J.P. Morgan在2016年部署了可以自动筛选商业贷款合同的软件,该软件每秒钟可以筛查1.2万份商业贷款合同。如果用人工处理的话,这些合同需要耗费律师和信贷员36万个钟头的工作。

4 智能投资顾问

近年来,资产管理机构积极推动科技金融的发展,用人工智能技术来提升资产管理中的研究效率。

传统投资顾问需要站在投资者的角度,帮助投资者进行符合其风险偏好特征、适应某一特定时期市场表现的投资组合管理。而这些工作都需要以大量昂贵的人工方式完成,所以财富管理服务也因此无形的提高了进入门槛,只面向高净值人士开设。

图片 11

但是现在,智能投资顾问(robot advisor)正在以最少人工干涉的方式进行投资组合管理,管理你的资产的可以是一排计算机,而你也不用是高净值人士。并且智能投顾在以更强大的计算机模型运用人工智能的技术对大量客户进行财富画像,以人工智能算法为每一位客户提供量身定制的资产管理投资方案。

一方面,资产管理机构通过人工智能阅读研究报告和公司报表,在这方面,人工智能获取信息的效率远高于人类。而且,人工智能技术擅长从网络新闻、影像文件等各种渠道获取信息,这些另类信息可以给资产管理公司的投研部门提供支持。相比于传统的分析师实地调研,通过人工智能阅读公司报告和从其他另类数据中获取信息,能够大幅提升工作效率与准确度。可以预期的是,随着人工智能技术应用成本的降低,这类技术将得到普遍应用,大幅降低研究员在信息获取和分析方面花费的时间。

Wealthfront就是一家非常具有代表性的智能投顾平台,借助于机器与量化技术,为经过调查问卷评估的客户提供量身定制的资产投资组合建议,包括股票配置、股票期权操作、债权配置、地产资产配置,旨在提供一个自动化的投资管理服务最大化投资回报。

其次,人工智能技术具有强大的信息整合和学习功能,可以协助研究员完成不同的研究需求。例如,通过人工智能方法,研究员可以查询与当前市场环境最相似的历史场景;人工智能方法通过数据挖掘,可以在不同的宏观事件或公司事件发生之后,提供有效的投资建议。

Wealthfront在进行自动化投资管理时一共有5个步骤:
1.确定当前投资环境的理想资产类别
2.以最低成本的ETF(交易型开放式指数基金)代表每一资产类别
3.确定风险承受能力并创建合适的投资组合
4.将现代投资组合理论(MPT)分散风险
5.定期监控并重新调整平衡投资组合

AlphaSense是一家服务金融投资的科技公司,它在2010年推出了一款服务专业投资机构的搜索引擎AlphaSense。该搜索引擎采用自然语言处理技术,从公司报告、新闻和研究报告中整合投资信息。通过该搜索引擎,研究人员可以更加方便地寻找与投资有关的关键信息。

而这一投资方法也受到市场的肯定,Wealthfront管理资金规模在2015年至2016年终增长将近64%,截至2016年2月底,Wealthfront的资产管理规模已达近30亿美元。

Aladdin平台是BlackRock开发的一款资产管理平台。Aladdin通过自然语言处理技术阅读新闻、公司研究报告等不同的文件,并且将文件中的信息与可能涉及的公司和行业联系起来,给研究人员提供投资建议。

在获得市场肯定的背后,是对智能投顾的信心。智能投顾能够战胜人性,避免投资人受市场变化而产生不理性的情绪化影响,使机器严格执行事先设定好的策略。并且智能投顾拥有比传统财富管理机构、私人银行更为透明开放的信息披露,及时提供风险提示,极大的减少了资产托管人与管理人之间的信息沟通壁垒。

此外,人工智能技术可以对获取到的信息进行深入挖掘,将不同的信息关联、整合起来,构建知识图谱,并且通过自然语言处理技术实现人机交互,服务研究工作。

Betterment也是一家专注于智能投资管理的金融科技公司,通过Markowitz 资产组合理论和各种金融衍生模型们应用到产品中,在云端低成本、快速、批量化地解决各种数据运算,再根据用户的倾向和设定的风险偏好,个性化地提供资产配置组合方案。其创始人Jon Stein曾在华尔街某金融机构任职高级投资顾问,致力于打造Betterment成为一款让投资更方便,更准确的智能投顾。2016年3月,Betterment获得E轮融资1亿美金。

知识图谱本质上是语义网络,是一种基于“图”的数据结构,通过知识图谱建立起不同实体和事件之间的关系。下图是知识图谱的一种展示。通过机器学习和知识图谱,可以建立起每个上市公司和与其关联度最高的上下游公司、行业、宏观经济之间的关系。如果某公司发生了高风险事件,可以及时预测未来有潜在风险的关联行业和公司;如果宏观经济或者政策有变化,也可以及时发现投资机会。

而由两名微软前员工创立的FutureAdvisor是一家专注于养老金理财市场的智能投顾公司。FutureAdvisor为面对有很多不同的财务账目,退休金,储蓄,股票,甚至一些CDs或债券但却不知道如何做出正确的选择的客户服务。 FutureAdvisor利用智能算法实时监测理财账户,寻找节税机会并调整多个账户。除了提供免费的投资组合优化以及投资数据的同源整合, FutureAdvisor也提供收费版投资代理服务。目前 FutureAdvisor以2亿美元估值被全球最大基金管理公司BlackRock收购。

图片 12

(schwab intelligent portfolios投资组合收益图)

知识图谱是Kensho的核心技术。Kensho公司成立于2013年,专注于通过机器学习及云算法搜集和分析数据,把长达几天时间的传统投资分析周期缩短到几分钟,能够分析海量数据对资本市场各类资产的影响,并通过自然语言处理技术理解和解答复杂的金融问题。Kensho能取代部分人类知识密集型的分析工作并且从数据中学习新的知识,提供快速化、规模化、自动化的分析结果。Kensho智能分析软件的主要特点有:

在面对变化莫测的金融市场时,Charles Schwab(嘉信理财)旗下推出的智能投顾产品schwab intelligent portfolios则能以蒙特卡洛模拟动态市场上的投资组合表现进行投后跟踪。同时在投资组合亏损的同时,机器会自动进行税收亏损收割,即将卖出亏损的证券递减一部分资本利得税。而当投资组合偏离预先设定的风险容忍度与资产配置建构时,机器会自动通过一系列买进与卖出的行为进行资产平衡的调整

1)高效的数据整理与强大的数据分析能力。Kensho具有海量的数据储存与超级计算的能力,能对各种结构化与非结构化的数据(包括有史以来所有资产价格数据以及全球发生的所有大事件数据)进行计算与分析。2014年Kensho能够在数秒内搜索90000多个全球事件,分析与回答650万个金融问题,预计未来能回答超过一亿个不同类型的金融问题。

智能投顾使人工智能技术不再远离人群,真正使得每一位普通人都能享受到智能金融科技公司所带来的好处,也让许多曾经认为“人工智能是遥不可及”的人认识到智能金融公司不仅仅只服务于金融行业的专业人士,而是可以为整个商业社会相关的群众创造价值。

2)自然语言平台,直观的用户体验。Kensho深受青睐的原因还在于其搭建的自然语言平台,直观简洁是Kensho的一大优点,它通过人机交互的模式与用户进行交流,用户只需要用简单正确的英语进行提问,Kensho就能给你提供精确的回答。

当人工智能不再是新鲜事的时候,投资银行与证券研究自动生成报告、人工智能辅助量化交易、金融搜索引擎证券研究和智能投资顾问财富管理这四种人工智能和金融结合的主流玩法让我们看到在未来,金融和人工智能结合成为智能金融的无限可能。

3)基于人工智能算法,拥有强大的学习能力。Kensho运用人工智能的算法,具有强大的机器学习能力,能够根据各类不同的问题积累经验,并逐步获得成长。Kensho的计算机系统能够让Kensho以极快的速度读取亿万条数据或信息,在分析数据的过程中不断地进行学习,并不断地优化其分析结果,变得更加智能。

而智能金融正在以一种人机结合的方式去提供大量的辅助决策工具,让投资人在形成逻辑链条的过程中,更容易地获得数据和分析层面的支持,才能以更多的精力去发现机器不善于完成的工作,从而大大提高工作效率。

图片 13

来源:天云大数据

另外,人工智能技术能够加速投研工作的自动化和智能化。目前人工智能方法已经用于撰写新闻和公司的营收报告。通过自然语言处理技术,人工智能为卖方机构和买方机构撰写研究报告也是值得期待的。

本文由优信彩票购彩大厅发布于技术支持,转载请注明出处:【广发金融工程】2018年重磅专题系列之七:人工

您可能还会对下面的文章感兴趣: